热搜:南怀瑾 |证严上人

分类浏览



加速器物理学 (第二版)(英文影印版)
作者:
[美] S.Y.Lee
定价:
50.00元
页数:
596页
ISBN:
7-309-05209-9/O.381
字数:
300千字
开本:
32 开
装帧:
平装
出版日期:
2006年11月       
本类其他相关图书

内容提要


       这本教科书是作者根据自己在印第安纳大学给研究生讲授《加速器物理学》的上课笔记和给美国粒子加速器学院讲授的两门课的相关讲稿基础上写成的。自1999年第一版问世以来,被广泛用作教材。第二版除了对原书作必要的修改之外,增补了自由电子激光器(FEL)和束线ˉ束线相互作用的第五章。
       加速器物理学是一门高度综合的课程,涉及荷电粒子在特殊设计的电磁场中运动并形成特殊用途束线的物理原理和技术应用的各个领域。本书第一章介绍各种类型加速器的基本原理和发展历史;第二章讲述回旋加速器的横向运动及其物理处理方法;第三章介绍同步辐射加速器和线型加速器的原理和设计方法;第四章讲述同步辐射现象和低辐射电子存储环的设计原理。全书的最后部分,提出了开发第四代光源的前景。
       全书在每节末尾都专门设计了练习题,为了使解题变得较为容易,作者有意把题目细分为很多小题。这些题目的解题思路和最终结果除了使读者深入了解基本原理之外,还可使读者直接进入相关的设计领域。
      
      

作者简介


       S.Y.Lee
       美国印第安纳大学教授、美国物理学会集束物理学分会(Divison of Physics of Beams)会员。长期从事加速器物理的教学和研究工作。研究工作包括集束冷却技术,集束的非线性动力学特征,同步辐射的自旋动力学,空间电荷对集束性能的影响,加速器设计原理,电子存储环的设计,集束不稳定的原因,自由电子激光器,集束的控制原理和技术,加速器的应用。多年来除了给本科生讲授加速器物理和辅导加速器实验之外,主要负责研究生的教学工作。
       曾担任美国粒子加速器学院(The United States Particle Accelerator School)院长,美国物理学会集束分会经济委员会成员,物理学会提名委员会成员,粒子加速器理事会项目评估委员会成员。
       出版著作有:Accelerator Physics、Spin Dynamics and Snakes in Synchrotrons,Space Charge Dominated Beams and Applications of High Brightness Beams,Beam Measurement等。
      

书摘


       出版者的话
      
       复旦大学出版社出版英文影印版《研究生教学参考书系》,主要基于以下几点考虑。
       1. (新加坡)世界科技出版公司以出版科技专著闻名于世,同我社已有10多年的友好交往。从20世纪90年代以来,尤其是1995年该公司并购了伦敦帝国学院出版社(Imperial College Press)51%的股份(近年已经完成了100%的股份收购)之后,这两大出版机构在潘国驹教授的集中指挥下,充分发挥了编辑学术委员会的职能,使得出书范围不断拓宽,图书层次逐渐丰富,因此从中遴选影印图书的空间更大了,再加上该公司在上海设有办事机构,相关工作人员工作细致,服务周到,给两个单位的合作交流带来极大的便利。
       2. 研究生教育是创新人才培养的关键,教材建设直接关系到研究生科学水平的根本。从2003年开始,我社陆续出版了Fudan Series in Graduate Textbooks这套丛书,国内的读者反响很好。但限于作者人力,这套丛书涵盖的学科和门类都严重不足。为此,我们想到再借助国外出版力量,引进一批图书作为硕士研究生的补充教材,(新加坡)世界科技出版公司与我社的合作,恰好提供了这样一个良好的机会。我们从该公司提供的近期书目中,遴选30多本样书,经过专家审读后,最终确定了其中的11种作为首批《研究生教学参考书系》影印出版。这11种图书的作者来自美、英、法、德、加拿大5个国家的10多所高校或研究部门,他们既是相关学科科研的领军人物,又是高年级本科生和研究生教学的杰出教授。各门教材既考虑到深入浅出的认知规律,又突出了前沿学科的具体应用,每本书都有充实的文献资料,有利于读者和研究人员深入探索。这其中6本教材配有习题,还包括一本具有物理背景的人员都需要了解的高级科普读物——《理解宇宙——从夸克到宇宙学》。
       3. 为了有利于广大读者和图书管理人员、图书采购销售人员的使用,特请龚少明编审为每本影印书编写出中文内容介绍和作者概况,并由他将preface(序言)全文译成中文。序言是一本书的总纲,它涉及写作要旨、逻辑体系、内容特色和研读指导等等,我们将其译成中文至少有利于读者浏览和选购,避免买书仓促带来的失误,毕竟英语是多数读者的第二种语言。
       4. 原版书价格较贵,大大超出读者的购买能力,即使图书馆或大学资料室也会受到经费不足的制约。出版影印本的书价大约只有原价的十分之一,无疑会给需要这些书的研究生和图书馆带来真正的实惠,这也是(新加坡)世界科技出版公司与我们合作的目的之一。
       5. 考虑到物理类图书是(新加坡)世界科技出版公司的第一品牌,我们首次引进的11本书,都属大物理的范畴。这一尝试如果得到读者和专家认可,今后再陆续开辟其他学科的影印渠道。
       欢迎读者批评指正,并提出有益的建议。
      
       复旦大学出版社
       2006年9月
      
      
      
       Contents
      
       Preface
      
       Preface to the first edition
      
       1 Introduction
       I Historical Developments
       I.1 Natural Accelerators
       I.2 Electrostatic Accelerators
       I.3 Induction Accelerators
       I.4 Radio-Frequency (RF) Accelerators
       I.5 Colliders and Storage Rings
       I.6 Synchrotron Radiation Storage Rings
       II Layout and Components of Accelerators
       II.1 Acceleration Cavities
       II.2 Accelerator Magnets
       II.3 Other Important Components
       III Accelerator Applications
       III.1 High Energy and Nuclear Physics
       III.2 Solid-State and Condensed-Matter Physics
       III.3 Other Applications
       Exercise
      
       2 Transverse Motion
       I Hamiltonian for Particle Motion in Accelerators
       I.1 Hamiltonian in Frenet-Serret Coordinate System
       I.2 Magnetic Field in Frenet-Serret Coordinate System
       I.3 Equation of Betatron Motion
       I.4 Particle Motion in Dipole and Quadrupole Magnets
       Exercise
       II Linear Betatron Motion
       II.1 Transfer Matrix and Stability of Betatron Motion
       II.2 Courant-Snyder Parametrization
       II.3 Floquet Transformation
      
       II.4 Action-Angle Variable and Floquet Transformation
       II.5 Courant-Snyder Invariant and Emittance
       II.6 Stability of Betatron Motion: A FODO Cell Example
       II.7 Symplectic Condition
       II.8 Effect of Space-Charge Force on Betatron Motion
       Exercise
       III Effect of Linear Magnet Imperfections
       III.1 Closed-Orbit Distortion due to Dipole Field Errors
       III.2 Extended Matrix Method for the Closed Orbit
       III.3 Application of Dipole Field Error
       III.4 Quadrupole Field (Gradient) Errors
       III.5 Basic Beam Observation of Transverse Motion
       III.6 Application of quadrupole field error
       III.7 Transverse Spectra
       III.8 Beam Injection and Extraction
       III.9 Mechanisms of emittance dilution and diffusion
       Exercise
       IV Off-Momentum Orbit
       IV.1 Dispersion Function
       IV.2 Η-Function, Action, and Integral Representation
       IV.3 Momentum Compaction Factor
       IV.4 Dispersion Suppression and Dispersion Matching
       IV.5 Achromat Transport Systems
       IV.6 Transport Notation
       IV.7 Experimental Measurements of Dispersion Function
       IV.8 Transition Energy Manipulation
       A. γT jump schemes
       B. Flexible momentum compaction (FMC) lattices
       C. Other similar FMC modules
       D. FMC in double-bend (DB) lattices
       IV.9 Minimum (Η) Modules
       Exercise
       V Chromatic Aberration
       V.1 Chromaticity Measurement and Correction
       V.2 Nonlinear Effects of Chromatic Sextupoles
       V.3 Chromatic Aberration and Correction
       V.4 Lattice Design Strategy
       Exercise
       VI Linear Coupling
       VI.1 The Linear Coupling Hamiltonian
       VI.2 Effects of an isolated Linear Coupling Resonance
       VI.3 Experimental Measurement of Linear Coupling
       VI.4 Linear Coupling Correction with Skew Quadrupoles
       VI.5 Linear Coupling Using Transfer Matrix Formalism
       Exercise
       VII Nonlinear Resonances
       VII.1 Nonlinear Resonances Driven by Sextupoles
       VII.2 Higher-Order Resonances
       VII.3 Nonlinear Detuning from Sextupoles
       VII.4 Betatron Tunes and Nonlinear Resonances
       Exercise
       VIII Collective Instabilities and Landau Damping
       VIII.1 Impedance
       VIII.2 Transverse Wave Modes
       VIII.3 Effect of Wakefield on Transverse Wave
       VIII.4 Frequency Spread and Landau Damping
       Exercise
       IX Synchro-Betatron Hamiltonian
       Exercise
      
       3 Synchrotron Motion
       I Longitudinal Equation of Motion
       I .1 The Synchrotron Hamiltonian
       I .2 The Synchrotron Mapping Equation
       I .3 Evolution of Synchrotron Phase-Space Ellipse
       I .4 Some Practical Examples
       I .5 Summary of Synchrotron Equations of Motion
       Exercise
       II Adiabatic Synchrotron Motion
       II.1 Fixed Points
       II.2 Bucket Area
       II.3 Small-Amplitude Oscillations and Bunch Area
       II.4 Small-Amplitude Synchrotron Motion at the UFP
       II.5 Synchrotron Motion for Large-Amplitude Particles
       II.6 Experimental Tracking of Synchrotron Motion
       Exercise
       III RF Phase and Voltage Modulations
       III.1 Normalized Phase-Space Coordinates
       III.2 RF Phase Modulation and Parametric Resonances
       III.3 Measurements of Synchrotron Phase Modulation
       III.4 Effects of Dipole Field Modulation
       III.5 RF Voltage Modulation
       III.6 Measurement of RF Voltage Modulation
       Exercise
       IV Nonadiabatic and Nonlinear Synchrotron Motion
       IV.1 Linear Synchrotron Motion Near Transition Energy
       IV.2 Nonlinear Synchrotron Motion at γ≈γT
       IV.3 Beam Manipulation Near Transition Energy
       IV.4 Synchrotron Motion with Nonlinear Phase Slip Factor
       IV.5 The QI Dynamical Systems
       Exercise
       V Beam Manipulation in Synchrotron Phase Space
       V.1 RF Frequency Requirements
       V.2 Capture and Acceleration of Proton and Ion Beams
       V.3 Bunch Compression and Rotation
       V.4 Debunching
       V.5 Beam Stacking and Phase Displacement Acceleration
       V.6 Double rf Systems
       V.7 The Barrier RF Bucket
       Exercise
       VI Fundamentals of RF Systems
       VI.1 Pillbox Cavity
       VI.2 Low Frequency Coaxial Cavities
       VI.3 Beam Loading
       VI.4 Beam Loading Compensation and Robinson Instability
       Exercise
       VII Longitudinal Collective Instabilities
       VII.1 Longitudinal Spectra
       VII.2 Collective Microwave Instability in Coasting Beams
       VII.3 Longitudinal Impedance
       VII.4 Microwave Single Bunch Instability
       Exercise
       VIII Introduction to Linear Accelerators
       VIII.1 Historical Milestones
       VIII.2 Fundamental Properties of Accelerating Structures
       A. Transit time factor
       B. Shunt impedance
       C. The quality factor Q
       VIII.3 Particle Acceleration by EM Waves
       A. EM waves in a cylindrical wave guide
       B. Phase velocity and group velocity
       C. TM modes in a cylindrical pillbox cavity
       D. A1varez structure
       E. Loaded wave guide chain and the space harmonics
       F. Standing wave, traveling wave, and coupled cavity linacs
       G. HOMs
       VIII.4 Longitudinal Particle Dynamics in a Linac
       VIII.5 Transverse Beam Dynamics in a Linac
       Exercise
      
       4 Physics of Electron Storage Rings
       I Fields of a Moving Charged Particle
       I.1 Non-relativistic Reduction
       I.2 Radiation Field for Particles at Relativistic Velocities
       I.3 Frequency and Angular Distribution
       I.4 Quantum Fluctuation
       Exercise
       II Radiation Damping and Excitation
       II.1 Damping of Synchrotron Motion
       II.2 Damping of Betatron Motion
       II.3 Damping Rate Adjustment
       II.4 Radiation Excitation and Equilibrium Energy Spread
       II.5 Radial Bunch Width and Distribution Function
       II.6 Vertical Beam Width
       II.7 Radiation Integrals
       II.8 Beam Lifetime
       Exercise
       III Emittance in Electron Storage Rings
       III.1 Emittance of Synchrotron Radiation Lattices
       A. FODO cell lattice
       B. Double-bend achromat (Chasman-Green lattice)
       C. Minimum (Η)-function lattice
       D. Minimizing emittance in a combined function DBA
       E. Three-bend achromat
       III.2 Insertion Devices
       III.3 Beam Physics of High Brightness Storage Rings
       Exercise
      
       5 Special Topics in Beam Physics
       I Free Electron Laser (FEL)
       I.1 Small Signal Regime
       I.2 Interaction of the Radiation Field with the Beam
       I.3 Experiments on High Gain FEL Generation
       Exercise
       II Beam-Beam Interaction
       II. 1 The beam-beam force
       II.2 The Coherent Beam-Beam Effects
       II.3 Nonlinear Beam-Beam Effects
       II.4 Experimental Observations and Numerical Simulations
       II.5 Beam-Beam Interaction in Linear Colliders
       Exercise
      
       A Basics of Classical Mechanics
       I Hamiltonian Dynamics
       I.1 Canonical Transformations
       I.2 Fixed Points
       I.3 Poisson Bracket
       I.4 Liouville Theorem
       I.5 Floquet Theorem
       II Stochastic Beam Dynamics
       II.1 Central Limit Theorem
       II.2 Langevin Equation of Motion
       II.3 Stochastic Integration Methods
       II.4 Fokker-Planck Equation
      
       B Numerical Methods and Physical Constants
       I Fourier Transform
       1.1 Nyquist Sampling Theorem
       1.2 Discrete Fourier Transform
       1.3 Digital Filtering
       1.4 Some Simple Fourier Transforms
       II Model Independent Analysis
       II.1 Model Independent Analysis
       II.2 Independent Component Analysis
       II.3 Accelerator Modeling
       III Cauchy Theorem and the Dispersion Relation
       III.1 Cauchy Integral Formula
       III.2 Dispersion Relation
       IV Useful Handy Formulas
       IV.1 Generating functions for the Bessel functions
       IV.2 The Hankel transform
       IV.3 The complex error function
       IV.4 A multipole expansion formula
       IV.5 Cylindrical Coordinates
       IV.6 Gauss' and Stokes' theorems
       IV.7 Vector Operation
       V Maxwell's equations
       V.1 Lorentz Transformation of EM fields
       V.2 Cylindrical waveguides
       V.3 Voltage Standing Wave Ratio
       VI Physical Properties and Constants
      
       Bibliography
      
       Index
      
       Symbols and Notations

书评       

   

地址:上海市国权路579号
邮编:200433
电话:021-65642854(社办)
传真:021-65104812

 
 

版权所有©复旦大学出版社,2002-2024年若有问题请与我们 (webmaster@fudanpress.com) 联系! 沪ICP备05015926号